高硬度金型材のエンドミル加工(第2報) -工具摩耗形態の解析-

大塚裕俊・中川平三郎*・廣垣俊樹*・垣野義昭**・佐々木将志**・喜田義宏*** 機械電子部・*滋賀県立大学工学部・**京都大学工学部・***大阪工業大学

> Endmilling of Hardened Die (2nd Report) -Analysis of Wear Mechanism in Endmilling with Coated Carbide Tools-

Hirotoshi OHTSUKA • H. NAKAGAWA* • T. HIROGAKI* • Y. KAKINO** • M. SASAKI** • Y. KITA*** Mechanics & Electronics Division • *The University of Shiga Prefecture • **Kyoto University • ***Osaka Institute of Technology

要旨

近年,金型加工の高能率化のため、(Al, Ti)Nコーテッド工具を用いた加工技術のデータベース化が必要となっている.しか し高精度化と効率化を実現するには工具の摩耗形態を把握し、適切な加工条件を選択する必要がある.そこでエンドミル加工 における工具摩耗について研究した結果,摩耗の進行により法線方向の切削抵抗が著しく増大し、切れ刃の負のすくい角が増 大するという特徴的な摩耗形態を示すことがわかった.またその際、切りくずはせん断型切りくずに変化した.同時に摩耗形 態をモデル化した切削抵抗予測シミュレーションを行い、実測値との比較を行った.

1. 緒言

近年,高硬度材の切削に適した(Al, Ti)N コーテッド工 具等の開発により,HRC53 程度の高硬度材からなる金型 の高精度切削加工が可能となった¹⁾.しかしそれによる 高精度化と経済的効率化を実現するには工具の摩耗形態 を把握し,適切な加工条件を選択する事が必要となる. そこで本稿では高硬度材の切削に適したストレートエ

ンドミルを用いて切削実験を行い、工具の摩耗形態を明 らかにし、工具摩耗の程度による切り屑形状の変化を観 察する.また得られた結果より、工具摩耗の進展に伴う 切削抵抗の変化を推定する方法を検討する.

次にすくい角の変化に着目して、摩耗形態を未使用工 具の切れ刃上に模式的に再現し、切削実験を行う.これ により得られた切り屑の形状・色及び切削抵抗が本要因 によるものか確かめ、すくい角の変化に着目した切削抵 抗の予測モデルが摩耗エンドミルについても適用できる かを検討する.

2. 実験装置

ストレートエンドミルによる高硬度材の切削実験を, 直径 10mm,ねじれ角 45°,6枚刃の(Al, Ti)N コーテッ ド微粒超硬エンドミルを用いて,縦形 MC で行った.ま た被削材は SKD61(HRC53)を用いた.切削条件として主 に,主軸回転数 9,600rpm(切削速度 302m/min),送り 0.1mm/tooth(送り速度 5,760mm/min),径方向切込 0.5mm, 軸方向切込 10.0mm で,ダウンカットにて行った.また クーラントは用いず,切り屑除去のためのエアブローの みを行い,乾式切削にて加工した.実験では切削抵抗の 測定,工具摩耗部及び切り屑の形状・色の観察を切削距離 10m ごとに行った.

切削抵抗予測モデル

従来のストレートエンドミル加工における切削抵抗予 測モデルについては、これまで多くのモデルが提案され ている.本稿では、ストレートエンドミル切れ刃のすく い面上で形成される切り屑とすくい面との幾何学的な定 式化に基づく力学的モデル²⁾を用いて切削抵抗の解析を 行い、これを摩耗工具における切削抵抗予測モデルに拡 張した.尚、本モデルは高硬度材の切削に対し、未摩耗 工具については切削抵抗の予測に十分適用可能である事 が分かっている³⁾.そこで、摩耗形態の観察結果から、 摩耗工具モデルへの拡張は、切れ刃すくい角を工具形状 の幾何的パラメータとして変化させる事で対応させた.

4. 実験結果

実験により,切削距離の増加に従って被削材に対して 法線方向の切削抵抗が増大している事が分かった.これ により切削抵抗の増加は工具摩耗の進行と密接な関連が あると考えられる.

また工具摩耗の増加に伴い、切り屑の形状に特徴的な 変化が見られた.未摩耗工具による切削では、切り屑は Fig.1 に示すように流れ型切り屑となったが、工具が摩耗 した状態での切削では、切り屑の形状は Fig.2 に示すよう にせん断型切り屑となった.これは工具摩耗の進行によ り、切れ刃が大きな負のすくい角を有し、その切れ刃で 切削が行われた結果生じたものと考えられる.そのため 切り屑温度も上昇し、切り屑の色は初期には青色であっ たが工具摩耗がかなり進んだ状態では白色へと変化した. 次に工具摩耗が進行した段階での切れ刃の形状測定を

行った. 結果を Fig.3 に示す. 本条件の実質切込量は約

平成10年度 研究報告 大分県産業科学技術センター

50µmであり, Fig.3より切れ刃摩耗部では切削に関与す るすくい面のすくい角(-14°)が更に大きな負のすくい角 になっているという非常に特徴的な工具摩耗形態が分か る.そこで上記の切削抵抗,切り屑形状の変化が工具刃 先形状の変化によるものなのかを確かめるため,人工的 に工具切れ刃すくい角を-55°に加工した工具を用いて, 未摩耗工具と同様の条件にて切削実験を行った.この実 験により生じた切り屑形状をFig.4に示す.せん断型の程 度はやや少ないが,切り屑の形状・色は,ともに実際の摩 耗工具によるものに近いものであった.

次に未摩耗工具と, 負のすくい角-55°の工具による切 削抵抗の測定値と計算値をそれぞれ Fig.5, Fig.6 に示す. いずれも測定値と計算値では部分的な変動を除いてはよ く合致している.またすくい角 a, が-14°から-55°に変 化するに伴い, 法線方向の切削抵抗は約 1.6 倍に増大し ている.以上の結果から,切り屑形状の変化や切削抵抗 の増大が,本工具の特徴的な摩耗形態に起因している事 が確認できた.

Fig. 1 Chip Shape Formed With a New Cutter

Fig. 2 Chip Shape Formed With a Worn Cutter

Fig. 3 Shape of Cutting Edge (A Worn Cutter)

Fig.4 Chip Shape Formed With a Artificially Worn Cutter

Fig.5 Cutting Forces of Sharp Cutter

Fig.6 Cutting Forces of Artificially Worn Cutter

5. 結言

高硬度材の切削に適したストレートエンドミルを用い て、加工条件による工具の摩耗特性を把握することを試 みた.その結果、切れ刃すくい角が、すくい面の摩耗の 進行によりさらに大きな負の角度になるという、特徴的 な摩耗形態を示すことが分かった.

次に摩耗形態を模式化した負すくい角-55°の工具に よる切削実験の結果,摩耗進行に伴う切り屑形状,切削 抵抗の変化は,すくい角が変化する特徴的な摩耗形態に 起因している事が分かった.また力学的モデルにより切 削抵抗の解析を行い,摩耗工具の切削抵抗の予測に適用 可能である事を確認した.

参考文献

- 1)山田保之,青木太一,田中裕介,脇平浩一郎:コーティッド超硬工具による高硬度材の切削,日本機械学会 論文集(C編),60,577,(1994)2906.
- 2)A. E. Bayoumi, G. Yucesan and L. A. Kendall : An Analytic Mechanistic Cutting Force Model for Milling Operations, Trans. ASME, 116, 8, (1994) p331
- 3)大塚裕俊,中川平三郎,廣垣俊樹,垣野義昭,佐々木 将志,喜田義弘:高硬度金型材のエンドミル加工(第2 報):平成9年度精密工学会秋季大会学術講演会講演論 文集,(1997)p139