難燃性マグネシウム合金の凝固過程における金属組織変化 一難燃性マグネシウム合金の溶解・鋳造技術の高度化に関する研究一

園田正樹*・高橋芳朗*・宮原広郁**
*機械・金属担当・**九州大学大学院工学研究院

Microstructure Change of Non-combustible Magnesium Alloy during Solidification —Research of Advanced Melting and Casting Technology of Non-combustible Magnesium Alloy—

Masaki SONODA*•Yoshiro TAKAHASHI*•Hirofumi MIYAHARA** *Mechanical and Metallurgical Engineering Group•**Kyushu University, Faculty of Engineering

要 旨

我々は、九州地方知事会議の政策連合「工業系公設試験研究機関の連携」に係る共同研究の一つである「マグネシ ウム合金に関する研究」の分担課題として、「難燃性マグネシウム合金の溶解・鋳造技術の高度化に関する研究」につい て平成19年度より取組んでいる.本研究は、平成17~18年度に実施した地域新生コンソーシアム研究開発事業「難燃 性マグネシウム合金の高機能組織制御と鉄道車両用部材の開発」の補完研究も兼ねており、同事業で得られた成果や 課題をベースに、地場企業に技術移転が可能な「多品種少量生産に適した難燃性マグネシウム合金の溶解・鋳造技術 の確立」、製品設計の幅を広げるために重要な「各種難燃性マグネシウム合金鋳造材及び熱処理材の材料特性の把 握」等を主な目標としている.本年度は、鋳造CAE(Computer Aided Engineeringの略)の信頼性向上や鋳造及び熱処 理条件を適切に定める上で重要となる「難燃性マグネシウム合金の凝固過程における金属組織変化」について調査し た.

1. はじめに

マグネシウム合金(以下「Mg 合金」とする.)は,実用構造 金属材料の中で最も軽く(アルミニウムの約 2/3,鉄の約 1/4 の重さ),比強度,振動減衰性,耐くぼみ性,切削性,電磁 波遮蔽性,リサイクル性等に優れていることから,携帯電話 やパソコン等の電子機器の筐体材料として利用され,鉄道 車両,自動車,ロボット等の輸送機器や産業機器の構造材 料としても注目されている.しかし,Mg 合金は耐食性,常温 塑性加工性等に劣り,燃えやすいという欠点が課題となって いる.

一方, 難燃性 Mg 合金とは, 旧工業技術院九州工業技術 研究所(現独立行政法人産業技術総合研究所九州セン ター)で開発された合金で, 既存の Mg 合金にカルシウムを 約 2mass%添加して発火温度を 300~400K 上昇させた合金 である. 溶解時の防燃用遮蔽ガスとして地球温暖化ガスであ る六フッ化硫黄を使用せず, 大気中で溶解を可能とすること から, 環境に優しい Mg 合金として注目されている. また, 燃 えにくいという特徴を活かし, 社団法人日本鉄道車両機械技 術協会の車両材料燃焼試験において,「不燃材」の認定も 受けていることから, 鉄道車両用部材への適用も検討されて いる^{1)~3)}.

我々はこのような特徴を活かし、九州大学を中心とした地

域新生コンソーシアム研究開発事業「難燃性 Mg 合金の高 機能組織制御と鉄道車両用部材の開発」の中で、「鋳造 CAE (Computer Aided Engineeringの略)を活用した難燃性 Mg 合金の砂型鋳物への適用」について研究を進めてきた¹¹ ^{~3)}.しかし、これらの成果を商品化や事業化に結びつけ、新 たな鉄道車両用部材への展開とともに、自動車、ロボット等 の新たな産業分野へ展開を図るためには、いくつかの解決 すべき課題が残されている³⁾.

そこで平成19年度より実施している九州工業系公設試連携研究「Mg 合金に関する研究」の分担課題である「難燃性 Mg 合金の溶解・鋳造技術の高度化に関する研究」の中で, 地域新生コンソーシアム研究開発事業の補完研究も兼ね て,地場企業に技術移転が可能な「多品種少量生産に適し た難燃性 Mg 合金の溶解・鋳造技術の確立」,製品設計の 幅を広げるために重要な「各種難燃性 Mg 合金鋳造材及び 熱処理材の材料特性の把握」等の課題に取組んでいる.

本年度は, 鋳造 CAE の信頼性向上や鋳造及び熱処理 条件を適切に定める上で重要となる「難燃性 Mg 合金の凝 固過程における金属組織変化」について調査した.

2. 実験方法

2.1 組織観察試料の作製

本実験で用いた難燃性 Mg 合金(AZX912 合金)の組成 を Table 1 に示す.まず,高周波誘導溶解炉を用いて (AZX912 合金)を溶解し,内径 40mm×高さ 50mm の銅製 金型に 1003K から鋳込み,偏析の少ない円柱状インゴットを 作製した.さらに,各温度における平衡状態の金属組織を観 察するため,このインゴットから Fig.1 のように中心軸を対称 に1辺 8mm×高さ 15mm の直方体を水冷実験試料として採 取した.

Table 1 難燃性 Mg 合金(AZX912 合金)の化学組成

化学成分	Al	Zn	Mn	Ca	Mg
濃度[mass%]	9.3	0.67	0.24	2.1	残部

Fig.1 水冷実験試料の採取

得られた水冷実験試料は黒鉛るつぼに入れ, 横型電気炉 を用いてアルゴンガス雰囲気の中, Fig.2 に示すヒートパター ンのとおり 953K で加熱・溶解した. その後, 2K/min の冷却 速度で Table 2 に示す各温度まで降温し, 2 時間保持した 後, 水中に投入・急冷して各温度における平衡状態の金属 組織を観察するための試料を作製した.

2.2 組織観察試料の分析

これらの試料は 2%ナイタール溶液で腐食し,光学顕微鏡 で観察して固相の晶出状況や面積率を測定した.また,固 相と液相における各合金元素濃度を電子プローブマイクロ アナライザー(EPMA,島津製作所製,EPMA-1600)で分析 し,初晶 α Mg 相および α Mg 相と Al₂Ca 共晶に対する各合 金元素の分配係数を調査した.なお,EPMA 分析では,電 子ビーム径を 20 μm まで拡大させ,標準試料と分析試料の 各元素の平均濃度をそれぞれの特性 X 線の相対強度から 測定し,ZAF 法によって補正した.

Fig.2 水冷実験のヒートパターン

Table 2 水冷前の	保持温度
--------------	------

水冷前の保持温度〔K〕								
723	743	763	783	803	823	843	863	883

実験結果及び考察

3.1 光学顕微鏡による AZX912 合金の組織変化観察

Fig.3~Fig.11 に各温度から水冷した金属組織を示す. Fig.4 に示すように, 863K から水冷した金属組織でαMg 相の晶出が確認された.また, Fig.8 に示すように, 液相がまだ残る 783K から水冷した金属組織においてαMg 相と Al₂Ca 相との共晶組織が既にネットワーク状に形成されているのが確認された.

Table 3 に 763K 以下の各温度における Al₂Ca 相の面積 率を示す. 面積率はほぼ一定であることから, α Mg 相と Al₂Ca 相との共晶組織は 783~763K の温度域で晶出が完 了することが分かる.

Fig.3 883K から水冷した金属組織

Fig.4 863Kから水冷した金属組織

Fig.5 843K から水冷した金属組織

Fig.6 823Kから水冷した金属組織

Fig.7 803K から水冷した金属組織

Fig.8 783K から水冷した金属組織

Fig.9 763K から水冷した金属組織

Fig.10 743Kから水冷した金属組織

Fig.11 723Kから水冷した金属組織

Table 3 763K 以下から水冷した金属組織の Al₂Ca 面積率

温度[K]	763	743	723
Al ₂ Ca 相の面積率	0.10	0.09	0.11

また, AZX912 合金の金属組織中に占める固相の面積率 を固相率とし, 各温度における固相率の変化を調査した. Fig.12 に温度の冷却に伴う固相率の変化(温度-固相率曲 線)を示す. 883K で全て液相であった金属組織が, 40K 低 下した 843K で固相率が 0.55 となることから, 液相線温度直 下で固相率が急増することが分かる. また, Fig.8 の結果と併 せると, 金属組織がほぼ固相状態になった段階(783Kにお ける固相率 0.97)でαMg 相と Al₂Ca 相との共晶が晶出する ことが分かる.

Fig.12 温度-固相率曲線

なお, 我々が使用している鋳造 CAE はクオリカ株式会社 製 JSCAST であり, 実際の凝固過程に近いシミュレーション を行なうため, 温度と固相率の関係を(1)式のように定めてい る.

 $T_{I}=T_{S}+(T_{L}-T_{S})(1-f_{S})^{n}\cdots(1)$

T₁:固相率 f_sの時の温度[K]

T_s:固相線温度[K]

T₁:液相線温度[K]

f_s:固相率

n:凝固指数

凝固指数 n は金属の物性値として扱われ、シミュレーショ ンにおいて n 値が 1 を下まわって小さくなる程,温度-固相 率曲線は右上に凸(液相線温度近傍で大部分の凝固が進 む)になり, n 値が 1 を超えて大きくなる程,温度-固相率曲 線は左下に凸(固相線温度に近づいてから大部分の凝固が 進む)になる.したがって,Fig.12 の結果より AZX912 合金の 凝固指数は1未満であることが分かる.

Fig.13 は,(1)式に1 未満のn値を複数個代入して作図した温度-固相率曲線と実際の温度-固相率曲線を比較したものである.

凝固過程全体(固相率が 0 から 1 に変化する過程)で, 実際の固相率-温度曲線との形状が最も相似しているのは, n=0.4 の時であることから,これを AZX912 合金の凝固指数 とした.

3.2 AZX912 合金の溶質濃度の変化

Fig.14~15 に,固相率の増加に伴う液相中の各合金元素 の濃度変化を示す. **Fig.14** より,初晶(αMg 相)が晶出・成 長する間(固相率 0~0.9)は,Al と Ca が液相中に濃縮され ていくことが分かる. **Fig.15** より, αMg 相と Al₂Ca 相との共 晶が晶出し始める(固相率 0.97 以上)と,Al の濃度変化は ほぼ一定になり,Ca の濃度はやや減少していくことが分か る.

Fig.14 固相率の増加に伴う液相中の各合金元素の濃度変 化(固相率 0~1.0)

Fig.15 固相率の増加に伴う液相中の各合金元素の濃度変 化(固相率 0.75~1.0)

Fig.16~17 に, 固相率の増加に伴う固相中の各合金元素 の濃度変化を示す. Fig.16 より初晶(αMg 相)が晶出・成長 している間(固相率 0~0.9)は, 固相中の元素濃度は大きく 変化せずに固相率の増加が進行していることが分かる. Fig.17 よりαMg 相と Al₂Ca 相との共晶が晶出し始める(固 相率 0.97 以上)と, 固相中の Mg 濃度は僅かに増加し, Al とCa の濃度は僅かに減少していることが分かる.

Fig.16 固相率の増加に伴う固相中の各合金元素の濃度変 化(固相率 0~1.0)

Fig.17 固相率の増加に伴う固相中の各合金元素の濃度変 化(固相率 0.75~1.0)

Fig.14~17 の結果から,各相の晶出における各合金元素の分配挙動を調査するため,晶出相と液相との界面における各合金元素の平衡分配係数を(2)式から求めた. Table 4 にそれらの値を示す.

 $k=C_S/C_L\cdots(2)$

k:平衡分配係数

C_s:固相中の元素濃度

C_L:液相中の元素濃度

固相率の増加に伴う晶出相と液相との界面における各合 金元素の平衡分配係数の変化を Fig.18~19に整理した. Fig.18 には初晶(α Mg 相)が晶出・成長する間の平衡分配 係数の変化を, Fig.19にはα Mg 相と Al₂Ca相との共晶が晶 出し始めてからの平衡分配係数の変化を示している.

これらの結果から、固相率が 0.78 になるまでに、 α Mg 相 への平衡分配係数が 1 より小さい Al, Ca, Zn が液相へ排出 される. 固相率が 0.9 以上になり α Mg 相と Al₂Ca相との共 晶が晶出し始めると、液相の Ca は固相へ取り込まれ、液相 へ排出される Al の量は減少する. Zn は固相率が増加する 間,常に液相へ排出され続けているが、Mn は共晶が明らか に晶出し始める直前(固相率 0.78)から液相への排出が停ま り,固相へ移動している.

Table 4 AZX912 合金の晶出相と液相との界面における平

衡分配係数								
晶出相	温度	固相率	平衡分配係数					
			k _{Mg}	k _{Al}	k _{Ca}	k _{Mn}	k _{Zn}	
α Mg	863	0.16	1.12	0.27	0.02	0.46	0.18	
	843	0.55	1.15	0.30	0.02	0.31	0.23	
	823	0.75	1.29	0.22	0.01	0.22	0.15	
	803	0.78	1.43	0.19	0.01	1.16	0.09	
αMg	783	0.97	0.91	1.10	2.89	2.37	0.08	
+	763	0.98	1.06	0.85	2.54	1.88	0.07	
Al ₂ Ca	743	0.99	0.97	0.97	4.53	1.80	0.06	
	723	0.99	1.06	0.83	4.83	3.40	0.08	

Fig.18 初晶(α Mg 相)が晶出・成長する間の固相率の増加 に伴う各合金元素の平衡分配係数の変化

Fig.19 α Mg 相と Al₂Ca 相との共晶が晶出し始めてからの 固相率の増加に伴う各合金元素の平衡分配係数の変化

Fig.14~15の結果から, AZX912 合金の Al₂Ca 共晶線を Mg-Al-Ca 液相面状態図⁽³⁾に記入すると, **Fig.20**のように共 晶線(赤線が AZX912 合金の共晶線)の位置がずれている ことが分かる. Mn と Zn の添加が Al₂Ca 共晶線に与える影 響を調べるため, **Fig.21** に示すような液相中の Al と Ca のみ の濃度変化をパラメータとした状態図を作成した. AZX912 合金の Al₂Ca 共晶線が Mg-Al-Ca 合金の Al₂Ca 共晶線よ り低 Al 側に移動しているのは, AZX912 合金には Mn 及び Zn が含有されているために変化したものと考えられる. 今 後,他の難燃性 Mg 合金(AZX312 合金, AMX602 合金等) についての Al₂Ca 共晶線をこの状態図に追記していくことに より, Mn, Zn の添加が及ぼす Al₂Ca 共晶線への影響の調 査が望まれる.

Fig.20 Mg-Al-Ca 平衡状態図の液相面および共晶線(赤 線は AZX912 合金)

Fig.21 各種 Mg-Al-Ca 合金の共晶線

4. まとめ

難燃性 Mg 合金(AZX912 合金)を固液共存領域の各温 度から急冷凝固させ,各温度の平衡状態における金属組織 の観察および溶質濃度を調査し,以下の結論を得た.

- 1) AZX912 合金の Al₂Ca 共晶は, 金属組織中の固相率が 約 0.9 を超えた段階で晶出し, 温度が 763K へ低下す るまでに完了する.
- 2) AZX912 合金の凝固において,金属組織中の固相率 は、液相線温度より低下して 40K 以内の間に、半分以 上に急増する.

- 3) 鋳造 CAE に用いるべき凝固指数は, 0.4 程度である.
- 4) AZX912 の凝固において, Mg を除く各合金元素は初 晶 α Mg 相が成長する間は液相へ排出されるが, Al₂Ca 共晶が晶出し始めると、Ca と Mn は固相へ取り込まれ ていく.
- 5) AZX912 の Al₂Ca 共晶は, Mg-Al-Ca 合金のそれよりも 液相中の Al 濃度が低い段階で晶出を開始する.

謝辞

本研究を進めるにあたり、電子プローブマイクロアナライ ザーによる分析について御指導,多大な御助言,御協力頂 きました九州大学大学院宮原研究室の皆様に謝意を表しま す.

参考文献

- 1) 秋山茂, 上野英俊, 坂本満, 平井寿敏, 北原晃:まてり あ 39(1)(2000), 72-74
- 2) 上野英俊: MATERIAL STAGE, Vol.4(No.8)(2004), 41-47
- 3) V.G.Tkachenko, V.G.Khoruzhaya, K.A.Meleshevich, M.V.Karpets, and V.V.Frizel': Powder Metallurgy and Metal Ceramics, 42(5-6),(2003),268-273.