一般研究

鋼のイオン窒化処理

1 緒 言

鋼材の表面硬化処理方法の一つに窒化法があり、 プレス型やモールド型、熱間鍛造型などの金型や自 動車部品等の耐摩耗性、耐焼き付き性の向上を目的 として利用されている。その中でもイオン窒化法は 無公害、省エネルギー型の方法で、処理温度が低い ことから発生する歪みも小さく、近年各社で導入さ れ利用されている。

当工業試験場でも平成元年度にイオン窒化装置が 導入された。そこで利用する際の目安になるよう、 各種材料にイオン窒化処理を施し、寸法変化や表面 あらさ、硬さ分布を計測したので以下に報告する。

2 実験方法

2.1 供試材

試験材としては、市販の合金工具鋼(SKD11、 SKD61)、合金鋼(SACM645、SCM415、SCM440)、 炭素鋼(S45C)、ステンレス鋼(SUS304、SUS420J2) 材を□10×50に加工し、材質によっては表1に示す 熱処理パターンで熱処理を施して試験に供した。

また、イオン窒化処理前は表面硬さを、処理後は 断面の硬さ分布をマイクロビッカース硬さ計(200 g)で測定した。処理前後の表面あらさは中心線平均 あらさを測定した。

適用材質	条件(温度×時間分)	略記
SKD11, SUS420	1025×25ガス冷-180×60	Q-TL
SKD11, SKD61	1025×25ガス冷-565×30	Q-TH
SACM645	910×25ガス冷-700×25ガス冷	Q-T
SCM440	850×25水冷-600×50水冷	Q-T
SUS304	1025×25ガス冷	Q

表1 供試材の熱処理条件

機械部 鶴 岡 一 廣

2. 2 処理条件

イオン窒化処理条件を表2に示す。処理条件は各 公設試のイオン窒化処理条件の状況を調査し、代表 的な条件を設定した^{(1)~(14)}。

表 2 処理条件

処理時間	処理温度 (℃)	ガス圧 (Torr)	適用材質
5hr ガス比率 H ₂ :N ₂	550	1 0 5	SKD11, SDK61, SACM645 SCM415, SCM440, S45C SUS304, SUS420J2
=1:1	400	10	SKD11, SUS304

3 実験結果

3.1 硬さ分布、表面あらさ及び寸法変化 以下に各材質についての断面硬さ分布、表面あら さ及び寸法変化について測定した結果を示すが、全

-37 -

体的にイオン窒化処理のガス圧による影響は、ガス E P=5 Torr と P=10 Torr ではみられなかった。 (1) SKD11

イオン窒化処理温度が550°Cの場合は、表面硬さ及 び硬化層深さ(表面から中心硬さ+Hv50までの距 離)は熱処理には殆ど影響されず、その表面硬さは Hv1100~1150、硬化層深さは0.1mm で、中心部の硬 さは処理前に比べて Hv で150~200低下している。

一方イオン窒化処理温度が400℃の場合は、表面硬 さは約 Hv1170が得られているが、硬化層は極表層 部分のみである。また、中心部硬さは処理前と殆ど 変わらず、処理による低下はみられない。

処理前後の表面あらさと寸法の測定結果を表3に 示すが、表面あらさは処理温度が高い場合は若干悪 くなる傾向があるが、低い場合は変化していない。

対辺間寸法は処理温度が高い場合、0.12~0.2%膨張し、低い場合は殆ど変化していない。

			Q-TL, 550		Q-1	H, 550	Q-TL,400		
アラサ	処	前	0.1	0.3	0.1	0.25	0.1	0.3	
Ra	理	後	0.2	0.3	0.2	0.5	0.1	0.3	
μm	変	七量	+0.1	0	+0.1	+0.25	0	0	
寸 法	処	前	11.	11.268		11.291		11.307	
(mm)	理	後	11.	11.290		11.306		303	
	変	七量	+0.	+0.022		+0.015		-0.004	
	処	前	11.	11.287		11.291		289	
	理	後	11.309		11	11.304		287	
	変化	七量	+0.	022	+0.013		-0.002		

表3 SKD11の表面あらさと寸法変化

(2) SKD61

表面硬さは Hv1100、硬化層深さは約0.15mm で、 表面より0.05~0.07mm の位置が最も硬くなってい

表 4	SKD61の表面あらさと寸法変化

アラサ	処	前	0.3		0.35		
Ra	理	後	0.3		0.3 0.4		
(µm)	変(七量	0		+0.05		
寸法変化	処	前	10.287	10.051	10.275	10.044	
(mm)	理	後	0.301	10.066	10.290	10.056	
	変化量		+0.014	+0.015	+0.015	+0.012	

る。

表4に示すように、表面あらさは処理前後で殆ど 変化していないが、対辺間寸法は平均0.14%膨張し ている。

-38 -

(3) SACM645

表面硬さは Hv1080で、表面から約0.025mm の位 置で Hv500と表面層のみが硬くなっており、硬化層 深さは約0.1mm である。

表面あらさは処理前後で若干悪くなっており、対 辺間寸法は約0.03~0.06%膨張している。

表5 SACM645の表面あらさと寸法変化

アラサ	処	前	0.4		0.1	
Ra	理	後	0.4		0.3	
(µm)	変	七量	0		+0.2	
寸法変化	処	前	10. 298	10.053	10.292	10.057
(mm)	理	後	10. 301	10.057	10.298	10.061
	変化量		+0.003	+0.004	+0.006	+0.004

(4) SCM415

表面硬さは Hv800であるが、硬化層深さは0.25 mm と深くなっている。

表面あらさは処理前後で若干悪くなっている。 対辺間寸法は約0.05~0.09%膨張している。

表6 SCM415の表面あらさと寸法変化

アラサ	処	前	0.2		0.7	
Ra	理	後	0.3		0.7	
(µm)	変	七量	+0.1		0	
寸法変化	処	前	10.058	10.100	10.066	10.104
(mm)	理	後	10.065	10.106	10.071	10.113
	変化量		+0.007	+0.006	+0.005	+0.009

(5) SCM440

表面硬さは Hv750で、硬化層深さは0.2mm であ り、内部の硬さは処理前より約80硬くなっている。 処理前後の表面あらさと寸法を表7に示すが、表 面あらさは若干悪くなっており、対辺間寸法は平均 0.06%膨張している。

表7 SCM440の表面あらさと寸法変化

アラサ	処	前	0.3		0.1	
Ra	理	後	0.3		0.3 0.3	
(µm)	変化	七量	0		+0.2	
寸法変化	処	前	10.239	10.022	9. 988	10.259
(mm)	理	後	10.241	10.029	9.996	10.266
	変化量		+0.002	+0.007	+0.008	+0.007

— 39 —

(6) S45C

硬化層深さは約0.15mm で、表面のみが Hv500と なっており、イオン窒化処理の効果が顕著にはみら れない。

表面あらさは表8に示すように、処理後には悪く なっている。対辺間寸法は変化していないとみてよ いだろう。

表8 S45Cの表面あらさと寸法変化

アラサ	処	前	0.2		1.1	
Ra	理	後	0.4		4 1.3	
(µm)	変(七量	+0.2		+0.2	
寸法変化	処	前	11.296	10.975	11.292	10.885
(mm)	理	後	11.297	10.973	11.293	10.882
	変(七量	+0.001	-0.002	+0.001	-0.003

(7) SUS304

表面硬さは処理温度が550°Cの場合 Hv1370、 400°Cの場合 Hv530となっており、処理温度による 影響が大きい。また、硬化層深さは550°Cの場合0.05 mm、400°Cの場合表面のみが硬化しているようだ。

表面あらさは処理温度に関係なくやや悪くなる傾向にある。また、寸法変化は処理温度が500°Cの場合は対辺間で0.19%膨張しているが、400°Cでは0.03%と殆ど変化がみられない。

表9 SUS304の表面あらさと寸法変化

			Q-TL,	550	Q-TL, 400	
アラサ	処	前	0.1		0.2	
Ra	理	後	0.2		0.4	
(µm)	変(七量	+0.1		+0.2	
寸法変化	処	前	11.281	11.274	11.288	10.274
(mm)	理	後	11.302	11.295	11.291	10.275
	変化	七量	+0.021	+0.021	+0.003	+0.001

(8) SUS420J2

表面硬さは Hv1150で、硬化層深さは約0.1mm で あるが、表面から0.075mm 付近までは Hv1100程度 の硬さが得られている。しかし内部硬さは処理前の 表面硬さが Hv670前後であったのが Hv400と低下 している。

処理前後の表面あらさと寸法を表10に示すが、表 面あらさは処理前後で若干悪くなっており、対辺間 寸法は0.12~0.15%膨張している。

3.2 窒化組織

写真1に各材質の代表的な窒化組織の顕微鏡写真

-40 -

を示す。

SKD11材は化合物層(白層)はみられないが、拡

表10 SUS420J2の表面あらさと寸法変化

アラサ	処	前	0.1		0.4	
Ra	理	後	0.3		0.4	
(µm)	変(七量	+0.2		0	
寸法変化	処	前	10.287	10.039	10.290	10.042
(mm)	理	後	10.299	10.052	10.305	10.056
	変化量		+0.012	+0.013	+0.015	+0.014

散層が黒色を呈しており素地との境界もはっきりしている。拡散層までの窒化深さは硬化深さと対応しており約0.1mmである。SKD61材はわずかに化合物層がみられ、全窒化深さ(化合物層+拡散層)は約0.15mmで硬化深さと対応している。

SACM645材は化合物層がわずかにみられるが拡 散層と素地との識別はできない。これを硬さ分布と 対応してみると、表面硬さは別にして表面からの硬 さが SKD11や SKD61などのように急峻な変化はし ておらず、緩やかな変化となって現れている。この 傾向は SCM415や SCM440、S45C にもみられる。

SUS304材は拡散層のみがみられ、素地との境界 ははっきりと現れており、その層の厚さは約50μm

イオン窒化処理条件:温度550°C、時間 5 hr、ガス比率 $N_2: H_2 = 1: 1$ 、ガス圧10Torr

写真1 窒 化 組 織

平成2年度 研究報告 大分県工業試験場

で硬さ分布とよく対応している。SUS420J2材は化 合物層がわずかにみられ、その直下に黒色の層がみ られる。拡散層はSUS304材ほどではないがはっき りしており、全窒化深さは約0.1mm である。ステン レス鋼はイオン窒化処理により腐食され易くなって おり他の鋼と違って耐食性の面では問題がある。

4 結 言

イオン窒化装置の導入にともない、利用の際の目 安となるよう、合金工具鋼(SKD11、SKD61)、合金 鋼 (SACM645、SCM415、SCM440)、炭素鋼 (S45 C)、ステンレス鋼 (SUS304、SUS420J2)に、温度 550°C、時間 5 hr、ガス比率 $N_2: H_2 = 1: 1$ 、ガス 圧10Torr の条件でイオン窒化処理を行うとともに、 各公設試の研究報告書における処理条件の状況を調 査した。その結果以下の結論を得た。

(1) 合金工具鋼は表面硬さ Hv1000以上、硬化深 さ0.1mm 以上が得られた。また、拡散層と素地とは はっきり識別でき、SKD61の表面層にはわずかに化 合物層がみられた。

(2) SACM645は表面硬さ Hv1000以上、硬化深さ
 0.1mm 以上、SCM415、SCM440で Hv700以上、硬
 化深さ0.2mm 以上を得た。

(3) 炭素鋼の表面硬さは Hv500、硬化深さは0.15mm であった。

(4) ステンレス鋼は表面硬さが Hv1100以上得ら れたが、硬化深さは0.05mm と浅く、硬さ分布は急 峻である。

(5) 表面あらさは処理によって全般的に悪くなる 傾向がある。

(6) 寸法変化は、合金工具鋼、ステンレス鋼の場 合0.1~0.2%膨張する傾向があるが、合金鋼、炭素 鋼の場合は殆ど変化しなかった。

(7) SKD11と SUS304を温度400°Cで処理した結果、SKD11は処理前後で内部の硬さの低下がなく、
 SUS304の場合は表面層のみ Hv400から500となった。

本実験では処理条件の詳細な検討を行わなかった が、各公設試研究報告の調査結果を参考にすれば大 まかな条件設定は可能である。ただ実用品にイオン 窒化処理を適用する場合は製品の形状、穴径の大小 等に影響されるため、各製品に応じた処理条件の設 定が必要であり、これが各利用者のノウハウとなる と考える。

追記

本実験に使用したイオン窒化装置は、平成元年度 に日本自転車振興会の補助金を受けて設置したもの である。

参考文献

- 1) 堀・高岡他:新潟工業技術センター研究報告, (1982), 39.
- 山本・友近:愛媛県工業技術センター研究報告,(1984),101.
- 浜石:鹿児島県機械金属指導センター, (1987).
- 菊内・久保・村田:京都市工業試験場研究報告,13 (1985),169.
- 5) 竜口・森田他:福岡県北九州工業試験場研究 報告,(1979),180
- 6) 西山:長野県工業試験場研究業務報告, (1979), 57.
- 林・稲葉他:兵庫県機械金属鋼魚指導所研究 報告,24 (1981),23.
- 8) 菊井・足森他:鳥取県工業試験場研究報告,
 5 (1983), 74.
- 9) 久保田:神奈川県工業試験所業務資料, (1982), 9.
- 10) 本川:高知県工業試験場研究報告,18(1987), 66.
- 11) 松本・進藤:秋田県工業技術センター業務報告, (1982), 51.
- 浜石:鹿児島県機械金属センター研究報告, (1985), 29.
- 菊井・足森他:鳥取県工業試験場研究報告,
 7 (1985), 65.
- 14) 菊内・久保他:京都市工業試験場研究報告, 14, (1986), 14.