光造形システムによる樹脂模型の形状測定(第2報) -光造形システムによる複雑形状部品の一品生産に関する研究-

船田 昌 機械電子部

Shape Measuring of Resin Models from Laser Stereolithography (Part 2) -Application of Laser Stereolithography System to Mono Production of Complex-Shape Parts-

Masashi FUNADA

Mechanics & Electronics Division

要旨

平成8年度は、光造形システムで製作した階段状模型(厚さ 2.4mm,中空模型)の形状測定を行い、平面部の 変形の状態を把握する事ができた。今年度は、高精度の樹脂模型の製作のため、変形防止リブ入りの階段状樹脂 模型の形状測定及び造形後の形状の経時変化測定を行い、変形抑制に対するリブの効果の確認した。また、樹脂 模型の変形防止のためリブ構造を検討するための基礎実験として、一辺が10mm、20mm、30mmの立方体形状の樹脂 模型を作製し、形状測定及び形状の経時変化の測定を行い、リブ間隔の最適値を求めた。

1. 緒言

光造形システムにより造形された樹脂模型は,樹脂の 硬化の過程において収縮し,反りなどの変形を生じる. この変形の度合は,模型の構造,造形条件,造形後の模 型の保管状態などにより大きく変わる.

樹脂模型を精密鋳造の消失模型として使用する場合, 焼成時の型の割れ防止などのためには,使用する樹脂の 量を少なくする事が有効である.このためには,模型の 肉厚を薄くする必要があるが,肉厚を薄くすると模型が 変形しやすくなる.この対策として模型のリブ構造が考 えられる.

そこで、平成8年度に光造形システムで製作した階段 状模型と同形状で、肉厚が薄く、リブを追加した模型を 作製し、形状測定を行う事により、変形抑制に対するリ ブの効果の確認を行った.

また,模型にリブを追加する場合,模型の変形量と型の割れ等に影響する樹脂量(リブの数)を考慮し,最適な模型構造にしなけらばならない.そこで,リブ構造を検討するために,一辺が10mm,20mm,30mmの立方体形状の樹脂模型を作製し,それぞれの形状測定を行い,立方体のサイズと変形量の関係を明確にした.

造形後の樹脂模型ついては、光硬化樹脂の暗反応等に より変形が進行する事が知られている。樹脂模型を精密 鋳造の消失模型として使用する場合、造形終了から型製 作まで、模型を保管する場合が考えられる。そのため、 高精度の鋳造品の製作のためには、造形後の模型の形状 の経時変化を把握する必要がある.そこで,前述の測定 に関して造形後3~5日について経時変化を明確にする 測定を行った.

2. 造形条件及び測定条件

2.1 造形装置及び造形条件

造形装置名及び造形条件をTable 1に示す.

造形に使用した装置は、LD励起固体ブルーレーザを使 用し可視光硬化性樹脂を硬化させる方式であり、ブルー レーザは造形ベースの下方から照射させ積層する引き上 げ造形方式である.

造形装置名	DENKEN SLP-5000	
造形条件		
引き上げピッチ	0. 2mm	
スキャン方式	シングル /一部クロス	
スキャンスピード	100mm/s	
スキャン形式	ラスター /ベクター	
ラスターピッチ	0. 2mm	
薄液コントロール	有り	

Table I 造形装置及び造形条件

2.2 模型形状及び設定座標系

2.2.1 階段状模型

Fig.1 に階段状模型の全体形状及びリブ構造の概略図, Fig.2 に測定時に設定した座標系を示す。全体形状は, 平成8年度に造形した階段状模型と同形状である. 模型 の肉厚は水平面 1.5mm, 垂直面 1mmである. 樹脂模型は, 造形ベースから切り離す前, 屋外(曇り)に約30分放置 し, その後は精密測定室(室温20±1℃,湿度50%)に おいて箱の中で保管した. 積層の方向は, XY平面に平行 でZ軸の一から+の方向で行った.

測定時の基準平面は, Fig.2 の第1平面部の四隅の点 (●部)にて設定した.

Fig. 1 リブ構造の概略図

Fig. 2 模型形状及び設定座標系

2.2.2 立方体模型

測定時の座標系をFig.3 に示す. 模型は,一辺10mm, 20mm, 30mm,上面肉厚 1.5mm,側面肉厚 1mmの中空の立 方体形状模型である.造形後は,測定時を除き精密測定 室内の箱中で保管した.

Fig.3 立方体模型設定座標系

また.	光浩形模型は、	レーザの照射に垂直な面におい	1

て造形上の理由により肉厚が設計値より厚くなる. その ため、今回の模型についても設計値 1mmの上面肉厚に対 して実寸肉厚 1.5mmとなっている. そこで、造形条件の 変更により上面が実寸肉厚 1mmの立方体模型も作製し測 定を行った.

2.3 測定部位及び測定方法

2.3.1 階段状模型

平成8年度に行った測定部位と同じFig.1中の第1平 面,第2平面,第3平面部についての形状測定を行い, 設計値との比較を行った.

測定は,各平面を3分割するY座標において、三次元 測定機の倣いプローブをX軸+方向に走査させ,測定値 は得られたデータをX軸方向に定ピッチ処理した値を使 用した.

樹脂模型の経時変化測定は、造形日からの3日間及び 5日目に行った。

2.3.2 立方体模型

肉厚 1.5mmの立方体模型の測定部位は、上面及び前後 左右の側面の5平面に対し、端から 1mm残して5等分し た5×5=25点とした.各模型の測定部位の座標値を Table 2 に示す.模型の経時変化測定は、造形日から連 続5日間/24時間毎に行った.

Table 2	測定座標値	単位 (mm)
	上面のX,Y座標値	側面の2座標値
10mm模型	-4, -2, 0, 2, 4	- 1, -3, -5, -7, -9
20mm模型	-9, -4. 5, 0, 4. 5, 9	- 1, -5. 5, -10, -14. 5, -19
30mm模型	-14, -7, 0, 7, 14	- 1, -8, -15, -22, -29

3. 測定結果及び考察

3.1 階段状模型

Fig. 4(a), (b), (c) に造形当日における各平面部の測定 結果を示す.第1平面部,第2平面部,第3平面部の設 計値は,それぞれ図中のZ = 0,-10,-15mmで区切られ た平面である.各平面ともリブの部分に盛り上がりがあ り,中空模型で見られた平面の変形(くぼみ)が抑制さ れている事が確認された.第1平面部の変形量の絶対値 も,中空模型の120µmから60µmと縮小した.また,中空 模型で見られた第2,第3平面部の湾曲状の変形が抑制 されている事も確認された.これは,模型内部のリブの 効果と考えられる.

Fig.5 に各平面中央部(X = 0mm)の偏差及び経時変 化を示す.Fig.4 にも見られる様に、中空模型と比較し た場合、第2,第3平面の傾斜は大きくなっていた.傾 斜は、1日目で最大になり、その後減少している.これ は、直接目光を当てた模型表面と模型の内側及び内部の

Fig.4 平面部測定結果(造形当日)

リブ(直接光が当たらない部分)との間に硬化反応速度 の違いが生じるため,階段状模型の平面部の傾斜を増加 させる模型表面部の収縮の変形に対して,傾斜を戻す方 向に働くリブの反り変形が,遅れて進行した事が原因と 考えられる.また,内部に残った未硬化樹脂の硬化が遅 れる事も要因としてあげられる.

3.2 立方体模型

3.2.1 上面肉厚 1.5mmの立方体模型

Fig.6 に10mm立法体模型の上面の測定結果を示す.中 央が窪んだ形状になっているが、これは積層による反り 変形と考えられる.この傾向は、20mm模型、30mm模型に おいても確認された.

Fig.6 10mm立方体模型上面測定結果

Fig.7 に10mm, 20mm, 30mm模型の上面中央部の偏差及 び経時変化を示す. 10mm模型では, 偏差が20µm以下であ る事が確認された. また, 30mm模型では, 偏差が 300µm で, 造形日以後変形が進行している事が確認された.

Fig.8 (a)~(c)に各立方体模型の側面中央の断面にお けるの各座標の測定値の偏差合計及び経時変化を示す. 10mm模型は全体的に 150µm程大きい事が確認されたが、 経時変化は見られなかった.

20mm, 30mm模型に関しては、側面は窪んでいる傾向が 見られた.経時変化に関しては,周辺部は大きくなり, 中央になるに従って小さくなっていくの傾向が確認され た.これらは,積層順序による変形,レーザの走査方向 による変形、光の当たり方による硬化速度の違いによる 変形,密封された模型の内部の気体の温度低下による収 縮変形などが要因と考えられる.

平成9年度 研究報告 大分県産業科学技術センター

3.2.2 上面肉厚 1mmの立方体模型

Fig.9 (a), (b)に10mm, 30mmの立方体模型における上 面中央部の偏差及び経時変化を示す。20mmの立方体模型 については、表面の状態不良のため測定を行わなかった. 10mm, 30mmの立方体模型のいずれの場合も, 肉厚 1.5mm の模型に比べ上面肉厚 1mmの模型の方が偏差が2~3倍 に大きくなっている事が確認された. 上面肉厚 1mmの模 型自体は、上面の剛性が低いものであり、剛性を向上さ せるためには、スキャニングのスピードを遅くするなど の対策が必要である.

経時変化については、上面肉厚による差違は見られな かった.

(b)30mm模型

Fig.9 立方体模型の上面中央部の偏差及び経時変化

4. まとめ

リブ構造階段状模型及び立方体模型(10mm, 20mm, 30mm) の形状測定を行い、以下の事が明らかになった.

- ①階段状模型のリブ構造により,第1平面の窪みの変 形及び第2, 第3平面の湾曲の変形が抑制される事 が確認された.
- ②階段状模型の第2,第3平面の傾斜は、時間ともに 小さくなっていく傾向にある.これは、造形後の模 型の保存状況が影響している.
- ③立方体模型の測定結果より、樹脂模型の製作にあた り高い寸法精度が必要な場合,10mmピッチ以下のリ ブを追加する事が望ましい.

④上面肉厚 1mmの立方体模型の測定結果より、レーザ の照射に垂直な面の剛性を向上させるためには、ス キャニングのスピードを遅くするなどの対策が必要 である.

付 锓

- 今回,測定に使用した装置を以下に記す. ・CNC三次元測定機: Mitutoyo HYPER KN810 軸精度: (1.5+1.5×L/1000) ≦2.5』m ※L: 2点間寸法(mm) : Mitutoyo MPP4
- ・倣いプローブ

-28 -