レーザ加工による脆性材料の割断技術に関する研究

伊野拓一郎 機械担当

Research of the Cutting Technology of Brittle Materials by Laser Processing

Takuichiro INO Machinery Section

要 旨

金属材料の加工などによく用いられるレーザ加工を脆性材料にも応用する方法が近年注目されている. レーザを用いた脆性材料の加工法の1つにステルスダイシングと呼ばれる方法がある.ステルスダイシ ングはレーザをシリコンウェハ内部に連続的に照射し損傷層を形成する.別工程にて損傷層と垂直な方 向に外力を加え,損傷層から発生したき裂により加工を行う方法である.ブレードによるダイシング加 工と比べて多くの長所があるが,レーザ加工の特性上,加工条件が加工の品質に大きな影響を与える為, 加工条件の特定が非常に重要になる.この加工条件の特定の一助となるようなシミュレーション法の確 立は加工工程の効率化において非常に重要となる.そこで,簡単な力学モデルを用いて,加工条件を推 定するようなプログラムを作成した.

1. はじめに

レーザ加工はこれまで,金属材料の切断加工におい て幅広い産業で用いられてきた.このレーザ加工技術を 脆性材料に応用する研究は古くから行われてきたが、近 年では、これらの研究成果が結実し、半導体などに用い られるシリコンのダイシング加工において実用化される ようになった.このレーザを用いたダイシング加工法は 浜松ホトニクス株式会社が開発し、ステルスダイシング と呼ばれている.このステルスダイシングは従来のダイ ヤモンドブレードを用いたダイシング加工と比べ多くの 長所がある.代表的なものとして2点挙げられる.1点 目は、ドライプロセスで加工を行う事である. ブレード ダイシングではダイヤモンドブレードとシリコンの摩擦 により工具が高温化するため、冷却水を必要としてきた が、非接触で加工を行うため完全なドライプロセスで加 工を行う事が出来,同様に,工具の摩耗を考慮する必要 がないので、大量生産に非常に強いという特徴がある. 2点目は、カーフロスが発生しない事である. ステルス ダイシングでは、レーザをシリコンウェハの内部に断続 的に照射する事で損傷層を形成し,損傷層と垂直な方向 に外力を加える事でき裂を発生させ加工を行う. これに より、シリコンウェハ上面にはカーフロスが発生しない. ブレードダイシングとステルスダイシングのカーフロス の比較を Fig. 1 に示す. これにより, 材料の歩留まり を向上させ、1枚のウェハから多くの製品を生み出すこ とが可能になる.このようにメリットの多い加工法であ

るが,加工条件及び,レーザ熱影響部の検討・評価は加 工の品質や信頼性において重要な条件である.そこで, 数値解析シミュレーションプログラムを作成し評価を行 った.

Blade Dicing

Stealth Dicing

Fig. 1 Comparison of kerf width in Blade Dicing and Stealth Dicing (Adopted from Hamamatsu Photonics K.K. "-The Stealth Dicing Technologies and TheirApplications-")

2. 数值解析

レーザを用いて脆性材料の加工する際の,加工条件 を決定する上で熱影響部の評価や加工現象の解明は非常 に重要である.愛知工業大学の岩田教授らの研究グルー プはシリコンの内部にレーザを照射し,レーザ熱影響部 全体を観察する事ができるような極めて厚い TEM 試料を 作成した.この試料を超高圧 TEM と STEM を用いて観察 を行った(Fig. 2).熱影響部では,広範囲に渡って転位 が発生しており,かつ塑性変形が生じている事が確認さ れた.加工において重要なき裂の発生はこの塑性変形を 伴う転位部から発生している事が分かった.つまり,シ リコンにレーザを照射した際に生じる熱影響部の影響を 正しく評価するためには,弾塑性解析による評価が重要 である事が分かる.

Fig. 2 Tem image of the heat-affected-zone and the crack position. (Adopted from H. Iwata, H. Saka and D. Kawaguchi "TEM Analysis of Crystalline Defects Induced by Stealth Dicing.", 2018)

そこで、本研究では現象を簡略化し、レーザ照射点 のシリコンの熱膨張により周囲に圧縮応力を生じ、塑性 変形が生じたと仮定し次のような解析モデルを作成した.

Fig. 3 Analytical model.

これは、等ピッチに並ぶ3つの内圧を受ける円孔が x軸上に並んでいる.内圧は、熱膨張したシリコンを表 している.このとき、円孔周囲に生じる塑性域を境界型 の高精度応力解析法である体積力法を用いて解析を行っ た.解析条件をTable 1に示す.

Table 1 Analytical Condition

Ratio of Inner pressure and	0.5
yield stress(p/ σ_{γ})	
Ratio of the intervals of	3.0

two circular holes and		
radius (a/ρ)		
Young's modulus (E)	73000[MPa]	
Poisson's ratio (v)	0.3	
Stress step	100	
Plastic model	Elastic perfect	
	plastic body	
Stress condition	Plane stress	
Yield criterion	Mises yield	
	criterion	

本年度は、材料物性値として、延性材料のアルミの 値を採用した.次に、解析結果を示す.

Fig. 4 Analytical result.

円孔が一つの場合は、Nadai の塑性理論に基づき、周 方向に塑性域が発生するが、円孔列の場合、互いに干渉 を起こすため、塑性領域は一様に分布せず、円孔列の円 孔に挟まれた部分に塑性域が生じやすい事が分かる.つ まり、レーザを断続的に照射した際に、始点と終点では き裂が板の外側にはき裂が発生しにくい事を示している.

本来であれば、シリコンのものを用いるべきである が、高温化におけるシリコンの塑性現象は現在、現象を 解明する段階であり、物性値が特定されていない、今後 の研究成果が期待される.

次に,熱影響部が製品に及ぼす影響について解析を 行った.レーザを用いた加工では加工面に熱影響部が確 認できるため,製品の品質を保証する為には熱影響部の 評価も重要である.そこで,Fig. 3のx軸を自由境界と するような半無限版に置き換えて解析を行った.この解 析モデルをFig. 5に示す.

この解析条件をTable 2に示す.

	CASE	CASE	CASE	CASE
	1	2	3	4
Ratio of internal pressure and yield stress (p/σ_{γ})	0.83	1.00	1.17	1.17
Ratio of notch pitch and root radius (a/ρ)	4.0			
Ratio of notch depth and root radius $((\rho - \delta) / \rho)$	1.0		0.5	

Table 2に記載していないそれ以外の条件はTable 1 と同じである.今回は、体積力法による数値解析を行う 上で、円弧と自由端の交点が多くあるため、特異点の処 理を行わなければならない.通常、この交点は切欠きや き裂ではないため特異点とはならない.しかし、体積力 法では解析領域の境界に体積力を分布させ、境界の境界 条件を満たす事で解析を行う.その為、解析領域の外側

(以下,「補助領域」と呼ぶ)では直角の切欠きを持つ 板と同じ条件となるため直角の角部は特異点となる.そ の特異点の影響が解析領域にまで影響する為,解析精度 が悪くなる.この問題を解決する為に,Fig.6に示すよ うに,補助領域に点線で示すように自由境界の条件を満 たすように体積力を分布する事で補助領域の応力の特異 性が緩和される.Fig.5の問題ではこの方法を用いて数 値解析を行った.

Fig. 6 A boundary in an auxiliary region and a treatment of corner node

解析結果をFig. 7に示す. CASE1~CASE3 を比較する と内圧が上昇するにつれて塑性域が大きくなっている事 が分かる. ただし, 塑性域が大きくなっていっても, 両 側の半円切欠きの外方には塑性域が形成していない事が 分かる. つまり, 塑性変形が生じる転位部からき裂が発 生するとする時に, 塑性域が形成しない外側はレーザに より加工が行われている訳ではない事が分かった.ステ ルスダイシングにおいては、レーザ加工の後加工におい て、き裂面と垂直に荷重を加える事でき裂を進展させ加 工を行うが、加工の始点と終点はこの外力によってのみ 加工が行われている事が予測される.

CASE4 については、半円切欠き列と自由境界が半円切 欠きの切欠き半径の半分だけずれている時に生じる塑性 域形状を解析したものであるが、自由境界とずれた位置 にある時には塑性域が自由端に及んでおらず、加工が行 われない事が分かった.つまり、レーザを連続的に照射 する事により加工を行うステルスダイシングは直進性が 高い事が数値解析により分かった.

3. 異方性介在物の解析法

熱影響部の弾塑性解析は熱影響部全体をシミュレーションしたが、熱影響部から発生したき裂が進展する段階 のシミュレーションをしなければならない. き裂進展シ ミュレーションでは、き裂解析に強みがある体積力法を 用いて解析をする事が適切であると考えられる.

本研究テーマにおけるき裂解析シミュレーションにお いては、微視的な材料特性をどれだけシミュレーション に取り入れる事が出来るかが重要である.シリコンのよ うな材料は介在物によりき裂進展方向に大きな影響を与 える.この介在物は異方性を含む事も多く,この異方性 も同時に考慮する事が求められる.しかも、この異方性 介在物の異方性の方向は一方向のみではなく、任意の方 向に向いている事を考えると、介在物の数が多くなるに つれてローカル座標系を多く設定する必要があり,解析 が複雑化する. そこで,物質客観性の原理に基づいて, 弾性コンプライアンステンソルを座標変換し、介在物が ある事により生じる母材とのひずみ差をグローバル座標 系と同じ力対(集中力の対)で置き換える方法を開発した. まず、物質客観性の原理について紹介する. Fig.7 に示 すように, 原点 0 を同じくする座標系 0-x_i, x_i, x_k, と 0 $x_i x_j x_k$ があり、 $0-x_i' x_i' x_k'$ における弾性コンプライアン ステンソル $C_{i',j',k',l'}$ から $0-x_ix_jx_k$ における弾性コンプ ライアンステンソルCital に座標変換する事を考える.

Fig. 7 3D coordinate

ひずみベクトル ε_{ij} 応力ベクトル σ_{ij} とすると 0-x_i, x_i, x_k, における応力ひずみ関係は次のようになる.

$$\varepsilon_{i'j'} = C_{i'j'p'q'} \sigma_{p'j}$$

座標変換テンソル K を用いて両辺のひずみベクトル 応力ベクトルをグローバル座標系に座標変換する.

$$\begin{split} K_{i',j',ij} \epsilon_{ij} = C_{i',j',p',q'} \{ K_{p',q',pq} \sigma_{pq} \} \\ 次に, 左辺の K_{i',j',ij} を右辺に以降すると \end{split}$$

ε_{ij} = K⁻¹_{i,ji',j'}C_{i',j',p',q'}K_{p',q',pq}σ_{pq} となる.ここでグローバル座標系における応力ひず み関係は次のように表せる.

$\varepsilon_{i,j} = C_{i,jpq} \sigma_{pq}$

つまり, グローバル座標系における弾性コンプライ アンステンソル C_{ijpq} は異方性介在物の C_{i'j', y', q'} を用い て次のように表す事ができる.

$C_{ijpq} = K^{-1}_{iji}, j, C_{i',j',p',q'}, K_{p',q',pq}$

上式を用いて、弾性コンプライアンステンソルを座 標変換する事ができる.この式を用いて陳らが導出した 繊維材の解析方法に応用する.異方性介在物中の点Qに 応力成分 $\sigma_{ij}(Q)$ と点Qに内挿する力対の大きさ $T_{ij}(Q)$ は比例関係にあり、異方性テンソル $S_{ijkl}(Q)$ を用いて次 のようになる.

$T_{ij}(Q) = S_{ijrs} \sigma_{rs}(Q)$

異方性テンソルは弾性コンプライアンステンソル C と母材の弾性剛性コンプライアンステンソル D を用いて 次のように表される.

$S_{ijrs} = D_{ijk1}C_{k1rs} - \delta_{ir} \delta_{js}$

δ はクロネッカーのデルタである.上式に物質客観 性の原理に基づく弾性コンプライアンステンソルの座標 変換式を適応すると、

C_{klrs}=K⁻¹_{klk}, ', C_k, ', r, s, K_r, s, rs S_{ijrs}=D_{ijkl}K⁻¹_{klk}, ', C_k, ', r, s, K_r, s, rs⁻δ_{ir}δ_{js} 以上により, 異方性介在物を有する問題は均一な母 材にグローバル座標系と同じ座標系で表される力対の分 布で表される事が示された.

4. おわりに

- (1) レーザ熱源周りの塑性域が熱源膨張により生じると 仮定した時,塑性域の発生する部分はレーザ熱源の 周囲に一様に発生する訳ではなく、レーザを断続的 に照射する方向に大きく依存している事が分かった.
- (2) 複数個の異方性介在物の問題を取り扱うときに弾性 コンプライアンステンソルを物質客観性の原理に基 づき座標変換する事で異方性介在物の異方性の方向 を考える事なく計算を行う方法を提案した.
- (3) シミュレーションの完成度を高める為には高温下で のシリコンの物性値が実験的に得られる事が求めら れる.

謝辞

本研究の方向性について的確な助言をして頂いた株 式会社式会社AK電子 笠置様,ステルスダイシングに ついてさまざまな情報提供をして頂いた浜松ホトニク ス株式会社 奈良様,数値解析シミュレーション及び, 論文作成において多大なご支援を頂いた長崎大学大学 院 才本教授,同大学大学院博士後期課程 園部氏に心 より御礼申し上げます.

参考文献

- 技術資料 ステルスダイシング技術とその応用
 -The Stealth Dicing Technologies and Their
 Applications- 浜松ホトニクス株式会社
- (2) 岩田 博之,坂 公恭,坂口 大祐 ステルスダイシングにより生ずる結晶欠陥解析と クラック形成メカニズム レーザー学会学術講演会第38回年次大会講演 予稿集 一般講演D725pVIII06
- (3) 西谷 弘信,陳 玳こう(王へんに行) 体積力法<重ね合せの原理による数値解析法> 培風館
- (4) 陳 玳こう,春山 繁之 き裂と繊維材との干渉
 日本機械学会論文集(A編) 59 巻 560 号 1993 年