シリコン基板洗浄の解析

~高効率太陽電池製造法の開発~

江田善昭・安部ゆかり・二宮信治 工業化学担当

Pre-clean of Si Wafer for Solar Cells

-Development of micro system-

Yoshiaki EDA, Yukari ABE, and Shinji NINOMIYA Industrial Chemistry Division

要 旨

テクスチャリング前洗浄のメカニズムの解明のために、テクスチャの表面分析と使用済み洗浄液の成分分析を試みた.テクスチャ形成のメカニズムを調べるため、SEM-EDSによるテクスチャのマッピングを検討したが、有意のパターンは見られなかった.

1. はじめに

化石燃料に代わる新エネルギーの開発は緊急の課題で ある.太陽光発電は,最も実現性の高い新エネルギーの 一つとして期待されている.しかし太陽光発電には,効 率が低い(単結晶型で15 - 19%)という問題点がある. 太陽光発電の高効率化は,世界中の研究者がしのぎを削 っているホットな研究課題である.

シリコン結晶系太陽電池(単結晶・多結晶)の表面は 平坦で入射光の約1/3を反射して(エネルギー変換しな いで)周囲に発散してしまい,大きな損失(反射損失) を生じている.この反射損失を低減して太陽光発電を高 効率化する技術は,「光閉じ込め技術」と呼ばれる.シ リコン太陽電池では,表面をエッチング液で処理してミ クロの凹凸(テクスチャ)を形成することによる反射を 抑制する技術が既に開発されている.

単結晶のシリコンウェーハを(例えばアルカリ溶液を 使って)結晶異方性エッチング処理すると、平坦なエッ チング面に所々ピラミッド形の構造体が形成される.こ の構造体は「マイクロピラミッド」と呼ばれる.マイク ロピラミッドの構造を Scheme 1 に示す⁽¹⁾.

マイクロピラミッドの形成はエッチングの結晶異方性 に起因する.例えば Si(100)面をアルカリ溶液でエッチン グすると,通常エッチングは(100)面の垂直方向に進行す る.結晶面によってエッチング速度が異なる((100) >>(111))ために,平坦なエッチング面((100))の所々に (111)面が「溶け残る」.溶け残った(111)面が形成する構 造体がマイクロピラミッドである.

テクスチャ処理は手法的には、浅い(ミクロンオーダ

ーの) ウェットエッチングである. テクスチャの最小単 位は, マイクロピラミッドである. つまりテクスチャと はマイクロピラミッドの集合体である.

Scheme 1. Structure of a micropyramid

均一かつ高密度のテクスチャ構造を作るためには洗浄 液による事前の基板洗浄が不可欠である.従来洗浄液と してある有機溶媒(以下,溶媒A)が使用されているが, 溶媒Aは引火性・揮発性の問題で現場では避けられてい る. 基板洗浄無しのテクスチャリングは,不均一なテク スチャ(テクスチャ領域と平坦領域が共存)しか生み出 さない.場合によってはエッチングが全く進行しない.

マイクロピラミッドの形成には、ピラミッドの頂点に 「核」となる「マイクロマスク」が理論的に必須である⁽²⁾. キーポイントにも関わらず、「マイクロマスク」の正体は 未だ不明である.「マイクロマスク」の容疑者として、エ ッチング面に再付着したパーティクル,除去しきれなかった酸化膜,ウェーハ中の不純物原子,エッチング面に付着した水素ガス(気泡)などが考えられる⁽³⁾⁻⁽⁵⁾.

以上の状況を整理して、筆者らは基板洗浄がテクスチ ャリングに及ぼす役割について下の2つの仮説を立て た.

仮説(1)脱脂説 (Scheme 2 参照)

仮説(2)表面反応説(Scheme 3 参照)

仮説(1)脱脂説

本研究で用いた Si ウェーハは、スライス工程における 切削油を完全には除去しないで、あえて薄膜を残してい る.この油膜が保護膜となりシリコン表面の自然酸化を 防止しているため、油膜の下のシリコン表面は純粋なシ リコン単体(通常の表面は自然酸化膜)である.単体の シリコン表面は化学的活性が高いため、基板洗浄により 油膜が除去されてシリコン表面が曝されると水分子や酸 素分子と反応して(自然酸化)薄い不均一な酸化膜を形 成する.シリコン酸化物はアルカリ溶液(エッチング液) に対して反応性が低いため、「マイクロマスク」として働 く.

Scheme 3. Surface reaction theory

仮説(2)表面反応説

上で述べたようにシリコン表面は活性が高いため基板 洗浄中に溶媒Aと結合する.結合したSi原子は化学的 に安定(不活性)となり,テクスチャ処理の際「マイク ロマスク」として働く.

「溶媒 A を使わない洗浄工程の開発」は重要な課題であ る. 本研究は、この重要課題の一端として、基板洗浄につい ての基礎的な解析を当センターが分担した. 本研究では、 下の2つの課題について検討し、基板洗浄の原理へのアプ ローチを試みた.

課題(1)テクスチャの表面分析・観察

課題(2)洗浄液の化学変化

本研究は、大分県LSIクラスター形成推進会議の研究開発 補助事業により助成され、エス・イー・エス株式会社(以下研 究委託者)による受託研究として行った.

2. 課題(1)テクスチャの表面分析・観察

2.1 序論

「マイクロマスク」の調査(具体的にはマイクロピラミ ッド頂点の表面分析)は、テクスチャ形成のメカニズム へのアプローチにとって大きな一歩になりうる.重要な 課題であるにも関わらず、「マイクロマスク」に関する研 究報告例はほとんど例がない.本研究では表面分析によ り「マイクロマスク」への直接的なアプローチを試みた.

一方,研究依頼者はテクスチャの観察ツールは光学系 が主で,電子顕微鏡による観察を行っていなかった.「百 聞は一見に如かず」の諺のとおり,形態観察から多くの 情報を得ることが出来る.とりわけ,電子顕微鏡は光学 顕微鏡よりも高分解能で,焦点深度が深いため,新たな 情報が期待できる.

2.2 実験

2.2.1 試薬

試薬は全て和光純薬の特級以上を用いた.

溶媒Aとして研究依頼者が現場使用している溶媒Aと 同じメーカー・グレードの溶媒Aをそのまま用いた.シ リコンウェーハは Si(100)面の太陽電池用の単結晶ウェ ーハを,研究委託者(エス・イー・エス株式会社)より 提供された.テクスチャ観察用シリコンウェーハは研究 委託者によりテクスチャ処理された試料を提供された. 使用済み洗浄液は,共同研究者により実際に基板洗浄に 使用された試料を提供された.

2.2.2 方法

電子顕微鏡として日本電子の走査電子顕微鏡(SEM) JSM-7400Fを用いた. 観察試料である未処理シリコンウ ェーハはダイヤモンドペンで約 5mm 角に切断して溶媒 A で洗浄した. 観察試料であるテクスチャ済みシリコン ウェーハはダイヤモンドペンで約 5mm 角に切断したも のを用いた.それぞれの観察試料は金属コーティングしないでそのまま SEM 観察に用いた.

表面分析には X 線光電子分光分析装置(ESCA)と走 査電子顕微鏡付属の X 線分析器(SEM-EDS)の2機を用 いた. X 線光電子分光分析装置としてアルバック・ファ イの Quntum2000を使用した.未処理シリコンウェーハ を ESCA で分析して基板洗浄の前後を比較した.未処理 ウェーハとテクスチャを SEM-EDS でマッピングして 「マイクロマスク」の探索を試みた.

2.3 結果·考察

2.3.1 【SEM 観察】

Fig.1 はテクスチャ処理した良品 (テクスチャ良品)の SEM 画像である.全面に大小の「マイクロピラミッド」 (テクスチャ)が所狭しと敷き詰められてる様子が見て取 れる.真上からの視点のためわかりにくいが,ピラミッ ドの頂点と稜線が明確に見える.この SEM 観察による 最大の発見は,ピラミッドの頂点が想定以上に鋭いため, 頂点部位 (「マイクマスク」の存在が想定される所)が表 面分析の分解能 (SEM:約1 μm, ESCA:約10 μm) 以下 であることである.

マイクロピラミッド頂点の点分析では, Si 一元素以外 検出されなかった. SEM(脱出深さ:1 µm)で分析する には「マイクロマスク」は膜厚が薄すぎるのかも知れな い.

Figure 1. SEM image of a typical texture.

Fig.2に未処理ウェーハの SEM 像を示す.半導体用の 鏡面ウェーハとは違って,表面がミクロンオーダーでラ フである.表面の粗さはスライス工程に由来する.形態 的に特にエッチングされにくいポイント(「マイクロマス ク」)は見あたらなかった.

Figure 2. SEM image of Si wafer before texturing

【表面分析】

Figure 3 mapping of the texture.

Figure 4. mapping of the Si wafer before the texturing

Fig. 3・Fig. 4 にテクスチャ・未処理ウェーハの

SEM-EDS によるマッピングを示す. 両者とも有意のパ ターンは見られなかった.

【ESCA 分析】

	C atm%	O atm%	Si atm%
洗浄前	12 ± 2	46 ± 1	42 ± 2
洗浄後	7 ± 2	48 ± 2	44 ± 1

Table 1. 基板洗浄前後の表面分析結果 (n = 3)

Table1に基板洗浄前後の ESCA による表面分析結果 を示す.この結果を下にまとめる.

結果(1) 基板洗浄によりCが半減した.

結果(2)洗浄前後において Si:O 比が変わらず 1:1 で ある.

結果(1)は基板洗浄により油膜が除去されてること を示唆している.結果(2)はOが油膜ではなく酸化膜 由来であることを示唆している.

2.4 結論

表面分析による「マイクロマスク」の探索を試みた. しかし結果的に「マイクロマスク」の姿をとらえるには 至らなかった.想像するに、「マイクロマスク」は SEM (脱 出深さ:サブミクロン)で分析するには薄すぎ、ESCA (脱 出深さ:3 nm)で分析するには(マスク面積が)小さす ぎるため、今回用いた手法は適切ではなかったのかも知 れない.微小の分析スポットと浅い脱出深さを持つオー ジェ電子分光分析であれば可能かも知れない.

3. 課題(2)洗浄液の化学変化

3.1 序論

下式のように溶媒Aはアルカリ触媒の存在下で2個の 分子が結合して二量体(以下,A2)を生成することが知 られている.

$2A \rightarrow A2$

本課題では、仮説(上の反応が進行して A2 がパーセントオーダー以上になり、溶媒 A の活量が低下する)について検討した.使用済み洗浄液・未処理洗浄液に含まれる A2 の濃度をガスクロマトグラフー質量分析(GC-MS)により評価・比較した.

モデル実験として,飽和塩化水素ガス雰囲気中に未処 理洗浄液を曝して,暴露時間と A2 濃度の関係を検討し た.このモデル実験は,研究依頼者の社内における下の 背景に動機付けされた.

背景(1)基板洗浄の社内の作業環境の空気が酸性(フ ッ酸・硝酸系)である.

背景(2)洗浄液を開封後,時間依存性がある.

3.2 実験

3.2.1 試薬

試薬は全て和光純薬の特級以上を用いた.

溶媒 A として,研究依頼者が現場使用している溶媒 A と同じメーカー・グレードの溶媒 A をそのまま用いた. 使用済み洗浄液は研究依頼者より提供された物をそのま ま用いた.

3.2.2 方法

【GC-MS 分析】

ガスクロマトグラフ質量分析装置(GC-MS)としてア ジレント・テクノロジーの 5973iを用いた.GC-MS 試料 は、メンブランフィルタ(0.45 µm)に通して GC-MS に 1 µL を注入した.

【暴露試験】

密閉容器としてガラス製デシケータ(容積3L)を使った.50mLスクリュー管に塩酸50mLを仕込み,フタを解放してデシケータ中に静置させた.同様に,50mLの溶媒Aを塩酸と同じデシケータ中に静置させてデシケータを密閉し所定の時間(暴露時間)放置した.簡易定量はピークの積分値より行った.(下式)

A2 濃度= (A2 ピーク面積) / (全ピーク面積の合計)

3.3 結果·考察

Fig. 5 と Fig. 6 に溶媒 A (暴露時間 0h) と使用済み洗 浄液の GC-MS チャート(TIC)を示す. 両者とも保持時間 5.2 分に A2 のピークを確認した.使用済み洗浄液の方が, A2 のピークが新溶媒の数倍大きい.積分値より計算して 求めたそれぞれの A2 濃度は新溶媒: 120 ppm,使用済み 洗浄液: 930 ppm であった. この結果から洗浄液が基板 洗浄に使用されてる間に溶媒 A の A2 への反応が進行し ているように見える.

Figure 5. GC-MS chromatogram (TIC) of a new solvent A.

Figure 6. GC-MS chromatogram (TIC) of a used solvent A for pre-clean..

この段階では, A2 への反応を促進しているのが基板洗 浄自身なのか,工程現場の酸性雰囲気なのかを議論する には,検討材料が不足している.この検討材料を提供す るために酸性雰囲気中の暴露試験を行った.暴露試験の 結果を Fig. 7 に示す.この結果は洗浄液が酸性雰囲気に 接触している時間に従って A2 濃度が高くなる傾向を示 している.しかし増加しても A2 濃度が 0.1 %以下(0.1 % = 1,000 ppm)であるので, A2 が基板洗浄に与える影響 は小さい.

Figure 7. Relation between the concentration of A2 and the time exposed in the atmosphere saturated with HCl vapor.

3.4 結論

暴露試験により酸性雰囲気中における溶媒Aの暴露時間にともなって A2 濃度が高くなる傾向を確認した.しかし増加しても A2 濃度が 0.1%以下(0.1% = 1,000 ppm)であるので, A2 が基板洗浄に与える影響は無視できる.

4. まとめ

表面分析による「マイクロマスク」の探索を試みた. 「マイクロマスク」の姿をとらえるには至らなかった.想 像するに、「マイクロマスク」は SEM (脱出深さ:サブミ クロン)で分析するには薄すぎ,ESCA(脱出深さ:3 nm) で分析するには(マスク面積が)小さすぎるため,今回 用いた手法は適切ではなかったのかも知れない. 微小の 分析スポットと浅い脱出深さを持つオージェ電子分光分 析であれば可能かも知れない.

暴露試験により酸性雰囲気中における溶媒Aの暴露時間にともなって A2 濃度が高くなる傾向を確認した. しかし増加しても A2 濃度が 0.1%以下(0.1% = 1,000 ppm)であるので, A2 が基板洗浄に与える影響は無視できる. 今後は,使用済み洗浄液の GC-MS チャートに現れたピークの同定を検討する.

今後,仮説(1)を検証するために,洗浄以外の油膜 除去法(例えばイオンスパッタ,オゾン分解等)を検討 する.

参考文献

(1) 一例として,江刺正喜ら,「マイクロマシーニング とマイクロメカトロニクス」培風館(1992)

(2) 式田光宏, 「MEMS によるウェットエッチング技術」,「ウェットエッチングの不良要因とその対策」セミ ナー・テキスト,技術情報協会 (2008)

(3) 江田善昭, 「TMAH によるシリコンのウェットエ ッチング -化学の目で見たウェットエッチング-」, 「ウェットエッチングの不良要因とその対策」セミナー・ テキスト,技術情報協会 (2008)

(4) 江田善昭, K Min,「TMAH による Si のウェットエ ッチング」 http://www.oita-ri.go.jp/report/2004/2004_6.pdf
(5) 江田善昭,「TMAH によるシリコンのウェットエッ チング -化学の目で見たウェットエッチング-」,「エ ッチング技術」,印刷中,技術情報協会,(2009)